NELIAC
PROGRAMMING GUIDE

OOPHD9 99509 0900
L 2

o260 S99 B S99 » 00
o9® o9 o 29 © (2 2 X]
» . e®o0 0000

seenswPsssneD
(A X X X 1] 2999 ®® oee
969 & 9o e 9® &

209 o

September 1962 @ Auther: A. E. Lemay, LTJG USNR @ Editers: H. C. Kerr, Ir., A. M. Oshorne, LT USN

U. S. NAVY ELECTRONICS LABORATORY, SAN DIEGO 52, CALIFORNIA

FOREWORD

This document describes NELIAC (Navy Electronics
Laboratory Algorithmic Compiler) as developed on the
UNIVAC AN/USQ-17 computer and applied on the UNIVAC
AN/USQ-20 and UNIVAC 490 real time computers.

The author is indebted to LT J. E. White, USN,
LCDR R. R. McArthur, USN, LT K. S. Masterson, USN,
and Mr. Roger Rempei, who were instrumental in the
development of the NELIAC language and compller.

The NELIAC language itself was invented and developed
in its early phases by Dr. H. D. Huskey, Dr. M. H.
Halstead, and LCDR R. R. McArthur, without whom there
would be no NELIAC language.

Special acknowledgment 1s due Mrs. Helen Bate
for the preparation of the manuscript and her
knowledgeable editing of the text for technical

accuracy.

INTRODUCTION

The availability of large scale automatic data processing
equipment has revolutionized problem-solving techniques in vir-
tually every modern industry and labératory.

Programming 1s the operation by which such data processing
equipment is instructed to perform a particular task or se-
quence of tasks. Internal operation 1s in a numerical code or
-machine language- . Usually, no distinction 1s made
between the data which is operated on and the instructions them-
selves. Instructing the machine in its own language can be an
onerous and monotonous Job. To simplify the programmlng task,
many -automatic programming- systems have been developed. These
-gystems- are programs written for a computer to simplify the
problem of programming for it or other computers. The term
~compiler- 1s used to refer to such a system, and particularly
to one which accepts an English or algorithmic input language.
The compller then translates that higher level language to the
basic language of a particular computer.

The evolution of programming systems has progressed fur-
ther and further away from the characteristics of the machines
themselves. Indeed, some languages have highly machine in-
dependent characteristics, and may successfully generate pro-
grams for several dissimilar computers. NELIAC is a dialect of
the ALCOL 1958 language; and 1s classifled as a procedure-

oriented language.

SECTION

TABLE OF CONTENTS

FOREWORD
INTRODUCTION

I. NELIAC SYNTACTICS

Symbols

Grammar

Named Variables or Nouns
Name Format

Number Format
Punctuation

IT. DIMENSIONING

A,
B'

C.
D.
E‘
F.

G.
H.

Dimensioning Statement
Single Items, Lists, Tables,
Constants and Partial Words
Jump Tables N

Address Switches

Congruent Tables and Lists
Double Indexing and

Two Dimenslonal Arrays

Two Dimensional Jump Tables
Literals .

III. TFLOWCHART LOGIC

A.
B.
CO
D.
E‘
Fu
G.
H.

Computation Rules
Decislion Making
Loops
Subsceripting

Subroutines and Function Definitions

Function Calls
Machine Language
Sample Flowchart Layout

PAGE NUMBER

I-
I-
I~
=
I-
I-

AEVWN

—

II-
II-
II-
II-
II-
II-
II-
II-

ol U0 -

III-
III-
III-
III-
I1I-
IIT-11
IIT-13
III-14

OOV —

SECTION

Iv.

V.

VI.

TABLES

APPENDIX

TABLE OF CONTENTS

DECLARATIONS
A. Machine Dependent Operations
B. Establishing Locations
C. Input-Output Systems
D. Machine Code
E. Active Imput-Output Statements

OPERATORS GUIDE

A.
B.
C.
D.
E.
F,
G.
H.
I.

J.,

K.
L.

Card Input

Load Numbers

Correction Loads

Batching Corrections

Functions of the 9 Load

NELOS

NELIAC Operating Characteristics
NELOS Executive Program

The NELOS Operators

NELOS Control Statements

The NELOS Monitor

Capabilities of the Monitor Program

PROGRAMMING TECHNIQUES

A.
Bl

Sample Programs
The NELIAC -WRITE- Package

NELIAC Symbols
NELIAC CO/NO Teble

Definition of NELIAC Symbols
Glossary of NELIAC Terms
System Declaration

PAGE NUMBER

Iv-1
Iv-1
Iv-2
V-7
Iv-9

V-1
V-1
V-2
V-1
V-4
V-5
V-6
V-10
V-15
V-20
V-22
v-29

Table I
Table IT

Qb
e

~I. NELIAC SYNTACTICS

A. SYMBOLS
NELIAC programs are written using a basic set of alpha-

numeric, arithmetic, and punctuation symbols., The symbol

set consists of 26 letters, 10 numbers and 25 arithmetic-

punctuation symbols. | |
These symbols are translated from the code Qf/the input |

device (Flexowriter, Teletypewriter, or Hollerith card reader)

into compiler code. This code table 1s a loglcally arranged

table which represents each symbol with the 6 bits neqesséry

in the binary mode of the computer. Table I lists all the

NELIAC symbols with the NELIAC internal codes. When

punched cards are used for preparing NELIAC programs, special

composite symbols are required. These afe also illustrated

in Table I. Simple definitions bf each NELIAC symbol are

given in Appendix A; more definitive explahétions are gilven in

the following sections.

B. GRAMMAR

The compiler, itself a sophisticated program written in
its own language, is classified as a -self compiler-,]'It
utilizes -current operator/operand/next operator- combinatlions
to transférm the procedure oriented language into the computer
oriented object program; see Tablé II. It is therefore
absolutely necessary for the programmer to obserQe rather strict
rules of punctuation.

I-1

I, The use of the , - , is as a quotatlon mark and is only for
the convenience of the reader.

The rules are, however, simple and quite consistent
throughout the framework of the language. Misuse of operators,
i.e. punctuation, in the NELIAC language will result in
more serious implications than merely using bad grammar,
and will cause diagnostic printouts at compiling time.
Indeed, an error in punctuation may cause a great many
messages describing syntactical errors which are caused
directly by the first error in the chain.

NELIAC programs consist of up to three elements: the
Declarative Statement, the Dimensioning Statement, and the
Flowchart Logic.

1) The Declarative Statement 1s a means of putting
machine dependent operations into NELIAC language without
using machine language in the flowchart loglc.

2) The Dimensioning Statement or noun list contains
the assigned names(nouns) of all constants, variables, lists,
and tables, etc. used in the flowchart logic.

%) The Flowchart Logic is the NELIAC operating
program itself. The flowchart logic is written using NELIAC
symbols, constants, predeflned variables (nouns), and other
routine and subroutine names (verbs). Usually,vprograms are
of such extent that they will consiét of a collection of
flowcharts (flowchart loglc) with their assoclated dimensioning
statements along with one declarative statement from which.

the compiller manufactures a machine coded program.

I-2

C. NAMED VARIABLES OR NOUNS

Four types of variables are commonly used.in NELIAC
programs. They are: (1) signed whole words,}(z) unsigned
half word or bit fields, (3) multiword floating point
quantities, and (4) address variables. Half words and Dbit
fields are always treated as positive inﬁegefs. Constants
in legal number format may be used in any,part:or_tﬁe flow-

chart. See the Section on dimensioning for details.

D. NAME FORMAT ‘
The first fifteen characters in any NELIAC name are

significant, not including spaces. Any character past the
fifteenth 1s disregarded. Names must beglin with é lettef;
thereafter, any combination of letters or numbers cénstitﬁtes
a legal name. The single letters -1~ through -n- are
register variables Bl through B6, and thereforé cannot be

used as labels or -verbs-. Operators cannot be used as names,

i.e. those in the NELIAC card symbol set: BEGIN, END, OCT,

etc.

Examples: '
LEGAL NAMES ILLEGAL'NAMES
q|zt 1 qlzt
z 999876 b i
an extra long legal name cde]pql

I-3

There are three levels of name precedence in the NELIAC
language:
1) Permanent or global names
2) Flowchart local names
3) Formal parameter and subroutine names
A global or permanent name is one that has been defined i1n
the dimensioning statement or is the name of a procedure and
may be referenced anywhere within the system program. Names
that are local to a flowchart contain a temporary sign -|-
and may not be referenced outside the flowchart.
If a name is defined in a function or subroutine, it may
not be referenced outside that function or subroutine.
When the programmer uses the same name in two or three
levels of name precedence, the compiler uses the definition of

the most local name.

Z. NUMBER FORMAT

Numobers may be used as operands in the flowchart logilc
with the restriction that no floating point numbers with
cxponent parts are allowed. See example 1. The dimensioning
statement has no such restrictions. Example 2 illustrates all

the legal forms.

Example 1: IN FLOWCHART LOGIC

LEGAL NUMBERS ILLEGAL NUMBERS
3TTTTT7TTTs 1234512345125 (more than 10 octal
digits)
TTTTs
12345
3.2 .321 (no leading number or zero)
99.99 3.731g (no floating point octal
0.00C00123 are allowed)
Example 2: IN THE DIMENSIONING STATEMENT

LEGAL NUMBERS (include all above legal numbers)
3.0 x T4 (a decimal poWer of ten is understood)
3 x =1
4 x 0
- 338
- 89
-62.3 x =3
- 0 (octal TTTTTTTTTT)

F. PUNCTUATION
A program written in the NELIAC language depends upon

the proper use of punctuation. The -punctuation symbols-

used are shown below.

, comma | } right brace

3 semicolon { left brace

. period h boolean -and-
: colon U Dboolean -or-

1) COMMA: Commas are universal separators, they are
used to show the end of a phrése or sequence. Commas can be
used with great freedom almost everywhere.

Example 1:
, Compute Tax, Sum, Z,
In Example 1 the comma indicates a transfer operation.
Here ;compute tax- , -sum-, and -z- have been defined'as
subroutines. The example says -transfer to compute tax and
come back-, etc. Note that the retufn transfer 1s implied
only when the previous operator is -punctuation-.
Example 2:
A+B->C=>0D,

Example 2 shows that punctuation usually follows the final
operand in all store operations.

2) SEMICOLON: The semicolon denotes the end of the di-
mensioning statement. The compiler considers everything follow-

ing the semicolon at the end of the -dimensioning statement-

to be flowchart logic.

I-6

The semicolon also indicates the end of a true or false
alternative to a comparison as described in Section III-B.

The other legltimate use of the semicolon 18 to separate
the input parameters from the output parameters in a -function
call- or a -function definition-. See Section III-E and F.

3) PERIOD: The period indicates an unconditional
transfer when the previous operator is -punctuation-.

Example 1:
, Procedure.
Like the semicolon, the period indicates the end of a true or
false alternative wherever it 1s used. A misplaced period, 1.e.
one not indicating an unconditional transfer, will termlnate an
alternative as effectively as a semlicolon. See Section III-B.

A double period signifies the end of a flowchart and will
generate an unconditional Jjump stop to the flowchart entrance.

4) COLON: The colon indicates definition when the previous
operator 1s -punctuation-.

Example 1:
; Compute Number: -«-w-w--
The example defines that which follows the colon as the sub-
routine or routine assoclated with -compute number-.

When the colon is preceded by one of the comparison oper-
ators (=, >, etc.), 1t indicates the beginning of the -true-
alternative. See Section III-B.

In the dimensioning statement the colon has several other

defining capabilities as shown in Section II-B, E, F, and H.

I-7

5) LEFT AND RIGHT BRACES: The left and right braces are
symbols which indicate loops (Section III-C) or subroutines
(Section III-E). In all other respects they are identical to
commas. For thelr application in dimensioning statements see
Section I1I-B, C, D, E, and G.

6) BOOLEAN AND-OR: The boolean operators are symbols
which separate parts of a compound decision. In this sense

they are treated as punctuation. See Section III-B.

I-8

II DIMENSIONING

A. DIMENSIONING STATEMENT

The dimensioning statement, often called the noun 1list,
contains the assigned names (nouns) of all variables, constants,
lists, and tables. Dimensioning 1s the process of allocating
machine locations and naming variables; stating whether or not
they initially have known numerical values and their mode,
i.e. fixed or floating point, and information on the forms and
lengths of any lists or arrays. All variables used in a NELIAC
program must be defined at some point or other; however partial
words and floating point variables must be defined before they
are used. The dimensioning statement may be omitted in certéin

cases, but in any event a semicolon must precede the flowchart

logic.

B. SINGLE ITEMS, LISTS, TABLES, CONSTANTS, AND PARTIAL WORDS
Example 1:
a, b. c.
This example defines the fixed point full word variable
-2~ and the floating point variables -b- and -c-, all equal
to zero.
Example 2:
a(20), b(20).
In example 2 ~a- 1s a list of 20 fixed point full word
variables, -b- is a list of 20 floating point variables. In

both cases all locations are equal to zero.

II-1

Example 3:
a(10) = 1, 7, 3, 6,

Example 3 shows the general technique by which a 1list
may be wholly or partially allocated wlth non-zero quantities.
The remaining six locations of list -a- are equal to zero.

Example 4:
z(10) = 2.1, 3.2, 0.15, 100 x -10,

The mode of a list, 1,e. fixed or fldaéing point, 1is
determined by the first numerical value assigned in that list.
Example 4 i1llustrates a list -Z- of 10 floating point items,
four of which are assigned non-zero values. (Example 3
illustrates a 1ist of 10 fixed point items.)

Example 5:
A: B: [c(24»29), d(24-29), e(0>17), £(12>17),} (100),

In example 5, the‘partiél word variable -f- occupies bits
12 through 17 of the computer word =B~ which 1s also defined as
—A-. Note that -f- is wholly contained in the variable -e-, that
-c~ and -d- occupy the same bit locations and that bits 18
through 23 are unallocated. Note also that there are one
hundred of each of these varlables, all of which are numerically

equal to zero.

C. JUMP TABLES
Example 1:
Jump Table = { P, Q, R, S, T, U, V, {,

In the example Jump Table [0] contains the address of -P-,

II-2

successive entries contain the addresses of the routines -Q-
through -V-. The names mentioned in the jump table can be
names of routines or subroutines. In the flowchart logic
statement, Jump Table[1], generates a return jﬁmp to the add-
ress specified in the lower half of the ith entry in the
dimensioned Jjump table, Jump tabies méy be used to execute
subscripted return Jumps or straight jumps depending upon the

items defined.

D. ADDRESS SWITCHES
Example 1:
switch = {aj},

Address switches and jump tables are identical in
principle. Switch[C] contains the address of the noun -a-
and the k-designator (Note 1) appropriate to the noun. The
functions of jump tables and address switches should not

normally be milxed.

Example 2:
Switch = {Noun 1, Noun 2, Noun 3,},
The switch[0] contains the address of Noun 1. Switeh[1]

contains the address of Noun 2, etc. Both jump tables and‘
address switches are address variables; i.e. an address rather
than data 1s referenced. The distinction between the two
exists only in their usage. A Jump Table may be used as an

address switch to obtain the address of a routine, but using

Note 1: The k-designator, inserted in bits 18 through 20, 1is
for operand interpretation in an AN/USQ-20 machine instruction.

I1I-2

~n address switch as a Jjump table is very inadvisable, since

one rarely wishes to jump into the dimensioning statement area.

E. CONGRUENT TABLES AND LISTS
Example 1: |
A(10): B(5), c(5),

In example 1 the lists -B- and -C- are both numerically
equal'to zero and are wholly contalned in the 1list -A-. The
element -A[5]- 1s the same as element -C[0]-. The programmer
must ensuré the allocation of the whole of 1list -A- with other
lists or tables, as 1n example 2.

Example‘2:
A(10): B(5): ¢c(2) =1, 2, D(3) =3, 4, 5, E(5):
[F(284-29), G(0»5),} (3) = 6, 7, 8, H(2) = 9, 10,

Example 2 illustrates some ofvthe power of this technique.
Note that only ten cells have been allocated in the object
program. Example 3 illustrates diagrammatically the relations

expressed in example 2.

Example 3:

10100 ()

C
10101 (2)
10102 | »B (3)

D
10103 ()
10104 (5)

A
10105 (6)
10106 (7) »F, G
10107 E (&)
10110 (9)
_ H

10111 (10)

II-4

F. DOUBLE INDEXING AND TWO DIMENSIONAL ARRAYS

Example 1:

A (3 x W): AO(4) =0, 1, 2, 3,
Al(L4) = 4, 5, 6, 7,
A2(4) = 8, 9, 10, 11,

Example 1 illustrates a two-dimensional array of three rows
and four columns. Each row is named with the appropriate row
number. Thus, -A0- is row zero of the array -A-. Note that the
leading element of the array is -A[0,0]-. Elements of two-
dimensional arrays are stored as they appear on the flowchart, i.e.,
arrays are stored sequentially by rows.

Example 2 illustrates some of the identities possible with
the conventions adopted. Note that the last element of a two-
dimensional array has subscripts which are one less than the
number of rows and columns dimensioned.

Example 2:
Al0,0] is the same as AQ0[0O] and is equal to O
A[2,1] is the same as AE[I] and 1s equal to 9

A[2,3] is the same as A2[3] and 1s equal to 11

G. TWO DIMENSIONAL JUMP TABLES
Example 1:
Q(3x3) = {A, B, C,
D, E, F,
G, H, P,i
11-5

Table -Q- is like any other jump table except that it
may be referenced 1n the fashion of example 2.
Example 2:
, go to Q[1, 2]

This example will result in a transfer to routine -F-.

H. LITERALS

Literals are defined in the dimensioning statement and
stored in memory as NELIAC code just as they are written. They
are useful for alpha-numeric headings and output formats, etc.
The data contained in the literal begins with the first character
after the colon and ends with the character just before the right
bracket. Any NELIAC symbol may form part of the literal except
the right bracket, which ends the literal.

Example 1:
[Text: This 1s a line of text, a+b>c,]

The name -text- is an address variable. Whenever ~text-
is used as an unsubscripted noun, the address of the literal will
be obtained. The literal is formed internally as NELIAC code,
packed five characters to a word from left to right. A full

zero cell follows the literal.

1I-6

III. FLOWCHART LOGIC

A. COMPUTATION RULES
NELIAC is an algebralc language; the rules of arithmetic
precedence are strictly observed. The order of execution
within an algebraic group is:
1. Scaling (x 2%t or / 21)
2. Multiplication or division (x or /)
3. Addition or subtraction (+ or -)
Example 1: |
AxB+C=>P
The above example says: Take the product of A and B, add C,
then store in P.
Example 2:
A/B/C=>P,
Example 2 says: Divide A by B, then divide the resultant
quotient by C, then store in P.
Example 3:
A-BxC+D->P,
Example 3 says: Subtract from A the product of B and C, then
add D and store in P. '
A series or combination of divides and multiplles 1is taken
from left to right.
Example U4:
A/BxD/C->P,
This example is interpreted as A 'divided by B, multiplied by D,
divided by C, stored in P. o |

III-1

The programmer should observe that A, B, C, and D may be
expresslons enclosed in parentheses.
Example 5:
(6+H) x (F+K) + (6-F)
Examnle 5 1is treated like example 1 after the grouping is
evaluated. However, an expression enclosed 1n parentheses
must contain at least one arithmetic operator.
Note that -H- and ~-F- may also be expressions, but
-K- is the register variable B>. Any single variable may
have been previously defined as a bit field, a whole or
half word, an address variable, or a floating point quantity.
Mixed, 1.e. fixed point and floating point, operations are
not permitted.
The programmer may refer to specific bit locations on any
fixed point word.
Example 6:
DIMENSIONING FLOWCHART
CELL: | A(5%25),1, A(0>10) + . v

~A- DIMENSIONED

CELL |29 26 V2577 16 K155 KRN E Y 0

-A- FLOWCHART REFERENCE

Any fixed point expression may be shifted or scaled by

multiplying or dividing that expression by a power of 2.

ITI-2

Example 7:
A(3>14) x 216 > P,
A x 211 » P,
B/ 2tA > P,
Example 7 shows the three legal shifting operands: constants,
register variables, or whole or half words.

The programmer should observe that the CO/NO combinations
of (x 20 or / 2t) have the highest arithmetic precedence
and are always executed first.

The result of every computation must be stored in a variable
by the use of the store operator.

Example 8:
A+ B~>C,
Expressions in a decision statement (see Sec III-B) need not be
stored in this fashilon.

An expression may include a store operator at any point.

Example 9: |
(A+B=>C)/ (D+E-=F)~Qq,

Algorithms of dissimilar mode, 1i.e. fixed or floating, may
be separated by any punctuation or the right arrow. When a
fixed point expression 1s stored 1n a floating point variable,
the normalized floating poiﬁt representation of that integer 1s
obtained. When a floating point expression 1s stqred in a fixed

point variable, the truncated integer value is obtained.

ITI->

B. DECISION MAKING

‘There are seven basic decisions for expressions of similar

mode:

VoA KR
o oe)

A
&

> > > > > > >
")
&

< B <C: (fixed point only)
Note that A, B, and C can be Symbolic expressions of the type
discussed in Section A.
Example 1:
A = B: (true alternative - any expression);
(false alternative - any expression);
The true or false alternatives may be ﬁerminated by a Semi-
colon or by a period. The expression 1n the -true- or -false-
alternative can be another decision, if desired. For ciarity
it is permlissible to enclose the whole true or false
alternative in a set of braces.
Example 2:
A= B: [True };
i False };
Obviously, in éxecuting a branch statement of this type,
either the -true- alternative or the -false~ alternative will
be executed, but under no circumstances will both ever be

executed.

III-4

Whenever a decision 1s enclosed in braces as the
alternative of a previous decision, an unconditional transfer,
within the braces, and out of the nested decision, 1is not
treated as the end of the previous altérnati&e.

Example 3: M
A=B: [C=0: -=-=; -===; Q. |;
IM=2: ----; ; 1;

A=DB: C=0: |~eu==- R ; Q.
M= 2: ====- HE
Both of the above examples generate the same code.
Up to sixteen simple comparisons may be strung together
with the symbols:
U =~ logical -OR-
N « loglcal =~AND-
In any such string only one of the loglcal operators may Be
used, i.e., no mixing of -and- and -or-. | |
Example 4: |
A=BNCKDKENT¥# G: |
The NELIAC equivalent of a simple flow diagfam 1s shown

in example 5.

Example 5: l A+ 1A
NELIAC !
A+ 1 >aA, A =-B z
A = B: i |
B+ 1~ B; A+ 1->A B+ 1-+B
A+ 1> 4; | L-;—1 ' ;—-—J' ‘
A+ B-=>A, A+B-+A

III-5

C. LOOPS

Each compiler generated loop in a NELIAC program is
enclosed in braces and preceded by the loop control. Loops
use the register variables 1 through n only.

Example 1:
i = 10(1)20 | ==-===w= I,

The above example says: .Set i equal to 10, execute the operations
between the braces at least once, ask 1f 1 is equal to 20; 1if
it is , clear 1 and ignore the brace; if not, increment i and
return to the routine enclosed in the braces.

Note the difference in the basic format for an implied
decrementing loop:

Example 2:
1= 10(1)0 | ==mmmmmmn '

This loop is executed in the same fashion as the above loop,
except that 1 1s decremented by one to zero.

Basic form of the loop control:

alpha = beta(gamma)delta { -------- I,

Alpha may be any one of the fegistef variables i through n.
Reta may be an 1lnteger, a fixed point wholc or half word
(subscripted or not), or a register variable plus or minus
an integer. Gamma must be an integer, and a minus sign must
be inserted before the integer if the'programmer desires a
decrementing loop, unless the delta 1s a written zero as in

Example 2. Delta is of the same form as beta.

I111-6

The programmer can specify any loop increment or decre-~
ment, gamma; however, the loop will be terminated only 1if

exact equality with delta 1s obtalned.

D. SUBSCRIPTING
Any variable may be subscripted by an integer or a register
variable or by a register variable plus or minus an integer.
Example 1:
A[1 - b40g] + B[2] » C[1],
One can also subscript without an operand.
Example 2:
[1] + [2] = [1 + 10],
The above expression means the contents of the cell whose
address 1s in 1 plus the contents of cell 2 1s stored in the
contents of the cell whose address is 1 + 10.
When indicating bit limits with subscripts, the subscript
comes before the bilt notation.
Example 3:
A[1](11+22) + B[J](23+29) » c[k](24+29),
Subscfipted straight or return jumps may be made to
jump tables in the dimensioning statement.
Example U4:
, AlJ].
Example 4 executes a straight jump to the address contained

in the jth element of the jump table -A-. See Section II-C.

ITI-T7

Double subscripting in arithmetic expressions may be
used when working with a two - dimensional array. Two
dimensional arrays méy not be used before they are de-
fined in a dimensioning statement. See Section II-F,

In summary, subscripting may be written with register
variables, integers or with reglster variables plus or

minus lntegers.

ILxample 5:
Al2] ~»
Al1] »
AlL - 20) »
Alk + 30]

The use of double subscripting on single dimension lists
is meaningless and should be avolded.
The following alternate forms are legal, but should be

used as sparingly as possible, since they generate less

efficient code., -P- 18 a whole or half word.
Example 6:
A[P] » B[1, o] »
A[P + 10] - Clk, k] ~»
B[P, O] »
B(P, 1] »
B[P, P] »

The forms in Example 6 are not legal loop control operands.

111-8

E. SUBROUTINES AND FUNCTION DEFINITIONS
Example 1: P: | —ee~ee i,
Example 1 1llustrates the definition of a subroutine P.
When a call of P is made in any other part of the program,
control will be shifted to the flowchart enclosed withln the
braces. When the logical flow comes to the right brace, con-
trol will be shifted back to the point from which P was called.
A subroutine cannot be executed in any way without calling the
name of the subroutine.
A function is a subroutine with associlated parameters.
Example 2:
F(A, B, C,): [wmmmem- by
In example 2, F is defined as a function with associated formal
parameters A, B,‘and C. Those parameters are local to that
function. The area between the parentheses is treated
exactly as in dimensioning.
Example 3:
Function 1({A(0»5), B(10-22)}(20) = 7, 10,):

Example 3 shows thé use of normal dimensioning capabilities
within the parentheses.
output parameters may also be included in the function.
Example 4:
F(A, B, C; D, E): R —— i,

Example 4 1llustrates 5 formal parameters: A, B, C are input

III-9

-~

parameters; D and £ are output parameters. The input
parameters are separated from the output parameters}
by a semicolon.

Whenever the programmer writes a function with a single
output parameter which he wishes to preserve in an arithmetic
register, he must insure that the desired parameter is in the
Q-register. (Note 2).

Example 5. -
F(E): [===e=e=- , answer - answer, |

Example 5 shows a way in which the programmer can insure
that the parameter will be in the Q-register by entering the
whole word -answer- and immediately re-storing it. However,
this is usually not necessary since most arithmetic computa-
tions leave the result in the Q-regilster.

It should be re-emphasized that the parameter names
associated with the function definition are local to that
function. These names may be used other places in the flow-
chart logic without danger of conflict.

All names assoclated with subroutines or functions are
local to that subroutine or function, i.e. one cannot call on
the functions formal parameter names outside the function and
one cannot transfer into a subroutine or function except through

the normal entrance.

Note 2: The Q-register is the auxiliary arithmetic register in the
AN / USQ-20 computer.

IT1-10

F. FUNCTION CALLS
A function may be called by simply writlng:
Example 1:
Q(F),
In example 1 the input parameter F is transmitted to the
corresponding position in function Q, then the function Q
is called. If there 1s a single outﬁut parameter, the parameter
can be left in the Q-register by the function and utilized as in
example 2,
Example 2:
SIN(A) » B,
NOTE: Here a function has been used as a noun or variable.
A function can be used in an expression.
Example 3:
(SIN(X) + cos(Y)) x ARCTAN(Z) - Q,
Qutput parameters are placed to the right of a semicolon.
Example 4:
F(A; B, C),
Example 4 says transmit parameter A to the function F, evaluate
the function F; the output parameters are then transmitted
to the variables B and C.

Functions may have mixed mode parameters. The programmer
must insure that parameters of matching mode are set up in the
correct order. If the function has been defined with more
parameters than are used in the function call, the parameters
will be normalized to the right (i.e. the last parameter

ITI-11

called will be transmitted to the right-most position in the
function definition). In using both input and output
parameters, all output parameters called for in the

function definition must be utilized; otherwise the last
input parameter called will be transmitted to an output
parameter and the function call will be meaningless.

The mcde of arithmetic performed on the implicit
output of a function called in an arithmetic expression is
determined by the mode of the last parameter in the function
call.

To reiterate, 1in the function call the parameter names
bear no relationship to the parameter names in the function
definition. The parameters used in the function call must
have been defined previously in the dimensioning statement
before they will compile correctly. |

Example 5:
Function Definition - Absolute(A; Abs A):
Function Call - Absolute(Vvalue[i]; Abs Value[i]),
In Example 5, the parameter -Value[i]- would be transmitted
to the function Absolute and evaluated as -A-. After
execution of the function, Abs A would be stored in

-Abs Value[i]~.

III-12

G. MACHINE LANGUAGE

Machine‘language may be used at any point in the flowchart
logic. Expressions of this form are completely unnecessary
and anachronistic in view of the compllers ability to -declare-
machine dependent functions. This notation is common to less
developed NELIAC compilers and 1s included to aid the
programmer in reading obsoleScent NELIAC pfggrams.

Example 1:

10 000g O, (clear Q-register)
26 030g a, (add the whole word -a-)
14 030g b[J-1], (store in the whole word b[J-1])

Each machine command begins with the five octal diglts
corresponding to the -f-, -j-, -k-, and -Db- designators
followed by an octal sign. At least one digit of —opérand~
must follow the octal sign, which 1s understood to be decimal
unless modified with another octal sign. Named variables, with
or without subscripts, are permissible as operands. Each machine
command is terminated with a comma. If both subscripting and a
non-zero -b- designator are written, the subscripting takes
precedence.

Example 2 shows the makeup of a typical AN/USQ-20 machine
instruction with its assoclated meanlng. Also shown 1is the

binary representation of the same instruction in core.

ITI-13

Example 2:

INSTRUCTION MEANING
4 1 3 2 1025C Store the contents of the
fikb ¥y Q-register in cell (10250 +

the contents of B2) and

skip the next instruction.

BINARY REPRESENTATION IN CORE
001 100 001 011 010 001 000 010 101 000
W_}

e = Y N
b J k b y

H. SAMPLE FLOWCHART LAYOUT

5
DIMENSIONING STATEMENT (may be omitted)
;
NAME OF ROUTINE: (may be omitted)
FLOWCHART LOGIC (may be omitted)

..stop code

III-14

IV. DECLARATIONS

A. MACHINE DEPENDENT OPERATIONS

Declarative statements are a means of putting -machilne
dependent- operations into NELIAC language without -machine
coding-in the flowchart logic.

Input-output functions particularly need this kind of
implementation. I/0 functions are defined in the declaration
before they are called upon 1n the regular NELIAC flowchart
logic. This means that the declarative statement must always
be read first in the line-up of flowcharts; preceding dimen-
sions, subroutines, executive routines, etc.

There 1s a system declaration containing general utility
routines provided with NELIAC. See Appendix C. The programmer
may also provide one users'declaration statement which must
be in the flowchart format and kept separate from the other
flowcharts. The compiler will store only one uéers declarative

statement which must be re-declared before each compiling run.

B. ESTABLISHING LOCATIONS
Declarative operations do not allocate memory locations
or produce machine language. However, the programmer can use

the declarative ability of the compller to establish the location,

Iv-1

for example, of the real time clock, interrupt entrances, or

any machine code program which ‘does not otherwise fit into

the framework of the Neliac system.

Examples:
NAME
CLOCK
SIN
COS :
RTPO

QPZ

K Designator
>

[el e]

2

ADDRESS

368
140g
1474
252000
20000

3

3

3

Each name defined in this manner is followed by a colon;

the first octal digilt after the colon is interpreted as a

k-designator, and the rest of the number is read as an octal

or decimal absolute machine location.

C. INPUT-OUTPUT SYSTEMS

The declarative statement merely describes the input or

output functions.
determined by the
chart logic. The
for the AN/USQ-20

Whether the function is input or output is

sense of the active statement in the flow-

declarative I/0 statements are implemented

computer.

Iv-2

The following eleven English phrases describe the input-
output operations. These phrases are referred to as declarators.
1) External Function 6) Monitor Buffer

2) Release Interrupt Lockout 7) Generate Buffer Control Word

3) Jump Active 8) Delay
4) Terminate Buffer 9) Machine
5) Buffer 10) Set Int Interrupt Entrance

11) Set Ext Interrupt Entrance

Each name -declared- may refer to a specific communication

channel in parantheses.

Example 1:
START PUNCH = (4), -===-emem-
START FLEX = (8), ======-=--
START READER = (4), -===--=--

Following the channel number, a series of mixed individual
operations may be described in the following four categories.
Category 1: In order to control the operand in the flow=-
chart logic, Category 1 should be used in the declaration.
These declarators requlre an operand from the flowchart
to generate the appropriate function codes determined by the
sense of the active input-output statement.
The declarators applicable to Category 1 are:
<external functlon), <release interrupt lockout)>, <jump active),
Kbuffer), <monitor bufferd>, <generate buffer control word),
Kdelay>, <(set int interrupt entrance)>, <set ext interrupt
entrance).

Iv-3

Example 2:
DECLARATION
START EQUIPMENT = (4) <external function),
FLOWCHART LOGIC
| Start Equipment <20g>,]
Category 2: These opera.ions indicate that no operand
is taken from the flowchart logic active statement. Each
of these operations is purely parenthetical, no operand is
required from the active statement. The current loéation 1s
used as the operand, if appropriate. The applicable declar-
ators are:
(external function(20g)), (release interrupt lockout),
(jump active), (terminate buffer), (delay(10)),
(machine code(1703CsC)).
Example 5:
DECLARATION
START PUNCH = (4) (external function(20s)),
FLOWCHART LOGIC
[start Punch <,],
At least bne quotation mark, -<-, must appear in the callout.
Category 3: These operations are used when the program-
mer defines one operand in the declaration and another in the
flowchart logic and calls for a summation of the two operands.
All operands declared must be legal fixed point numbers. The
declarators applicable are:

¢external function(020000600Cg)>, <machine (1103050)>,

V-4

example 4:
DECLARATION
REWIND = <External Function(02000 00000s)>,
FLOWCHART LOGIC
[Rewind <unit number),],

Category 4: A declarative statement may include
previously declared names, and indicates the order in
which they are called.

Example 5:

RUN AMOCK = Dump, Set, E, Tape, (all previously declared)
Previously declared names may be used to set up a hierarchy of
declarations. Such hierarchies are identical in principle to
those declarations which consist entirely of the three basic
declaration types. |

The implications of the declarators which describe the
input-output operations are: |

1) External Functlon:

The external function declarator is legal 1in all three
categories, and is used to control external equipment. Basic
commands to external equipment and other computers are given
with this declaratof,

2) Release Interrupt Lockout:

This deciarator is legal as a Category | or 2 function.
In category 1, a simple release interrupt jump is generated
for =ransfer to the required operand location. 1In Category 2

a release interrupt instruction is generated.

Iv-5

2} Jump Actilve:

This declarator is legal in Categories 1 or 2 . When
used in Category 1, the last pertinent sense, i.e. input or
output, is used to generate an input or output jump active.
When used in Category 2, a jump to current location is gener-
ated as in Category 1.

4) Terminate Buffer:

This declarator 1s legal only in Category 2 and takes the
-sense- of the active statement to generate approprilate instruc-
tions to terminate the buffer.

5) Buffer and 6) Monitor Buffer:
| These declarators are legal only in Category 1. They
requife special operands, called running subscripts, to de-
seribe what 1s to be buffered. The -sense- of the active
statement is used to generate input or output, monitors or
ordinary buffers, as appropriate.
7) Generate Buffer Control Word:
| This declarator is legal only in Category 1. The oper-
ands required are identical to the Buffer or Monitor Buffer
operands. The buffer control word is simply transmitted to
the Q-register independent of the -sense- of the active statément.
8) Delay:

The delay generated is equal to the number of machine
executions of an index Jump instruction as specified by the
operand + 1.

V-6

9) Machine: -

This declarator is legal in Categorles 2 and 3, and is
described below.

10) Set Internal Interrupt Entrance:

This declarator is legal only in Category 1. It causes
the compiler to generate code in the object program which trans-
mits to the appropriate input or output internal interrupt en-
trance a return jump instruction to an interrupt subroutine for
the particular channel defined in the declarationf

11) Set External Interrupt Entrance:
This declarator operates’exactly the same as Number 10,

except that the appropriate external interrupt entrance is.setg

D. MACHINE CODE

A letter -L- following the numerical expressions in the
lower half of a Category 2 operation indicates modification
relative to the present location by the amount of that num-
erical expression.

A letter -k- following a machine command in a Category 3
operation indicates that the -k~ designator of the operand in
the active statement will suppress the -k- designator in the
declaration. See Example 2.

The declarative statement 1is also used when it 1s de-

sirable to use machine language instructions for minimizing

Iv-7

execution time. For example, the repeat instruction is faster
than a loop for search operations and can be called up in a
NELIAC flowchart by defining the operation in the declarative
statement.

Example 1:

5(COMMENT: FLOWCHART)

A{100g), B,; |

[SEARCH ZERO <100g>, <A>, <NOT FOUND>, , I,
This expression calls for a search for zero in list A, which
contains 100 items. The value of the index when the zero 1s
first located is put in cell B, and the location at which the
program is to be continued if the search is unsuccessful 1is
the verb -not found-.

The compiler implements the call-out in Example 1 by
inserting the series of machine instructions in the object
program which have been defined by a system declarative
statement as follows:

Example 2:

SEARCH ZERO = <Machine Code(70230g 0k)>,
{Machine Code(11437g TT7776s k)>,
<{Machine Code(61000g 0k)>,
<Machine Code(16730s 0k)>,
The ~k- in the -y- part of the machine instruction refers to
the -k- designator of the operand in the flowchart call-out.
See Appendix C for a listing of the implemented system
declarations.

Iv-8

E. ACTIVE INPUT - OUTPUT STATEMENTS
Each active input-output statement will generate a
variable amount of code compiled as an open subroutine, that

18. the code will be inserted each time the statement is

s
written. If the programmer wishes to obtain the code only
once, he should enclose the active statement in braces to

make it into a closed subroutine. The closed subroutine may

have the same name as the I/0 Statement, and 1is called

as an ordinary subroutine.

Input-output statements are similar to function calls in
that the programmer must make hls operands line up with the
I/0 declaration.,

The -sense- of the statement, that is, input or output,
1s determined by the -quotation- operators. |

Example 1:
Sinputg - <outputd>
‘Each Statement begins with unique current operator~nekt oper-
ator palrs of [A¢ or [A>. The name A must be defined as an input-
output function name. Input operands may be mixed with output
operands. | “

Each operand must be éndlosed ih a set of -quotation-
operators. Commas are used to‘separate the operands.

Part of a list may be used as the operand of an active
statement. |

IV-9

Example 2:
DECLARATION»
A = (4) <obuffer),
FLOWCHART
[A <B[C>D]>, 1,

The active statement says, with reference to the declar-
ation: Initiate an output buffer on channel 4 of the area
starting with the element B[C] through the element B[D]. The
running subscripts may be integers, register variables, or
fixed whole or half words.

Example 3:
[A<B,],
Example 3 says: Initiate an output buffer on Channel 4 to
output the whole of list B.
Example U4:
[A<[BD, 1,
Example 4 says: Initiate a buffer using B as the buffer control

word.

Example 5:
5(COMMENT: DECLARATION)
PRINT = (4) <external function)
<external function(200000000g)>,

<buffer> (Jjump active)..

Iv-10

5(COMMENT: FLOWCHART)

A(10), status;

[print)> status <, <i>, <AD,]..

If the flowchart in this example were complled at

cell 10100, the machine code generated would be:

1000C 61000 10113
10100 00000 00000 (a)
10112 00000 00000 (status)
external function
10113 17230 10112
10114 10101 00000
10115 02000 0GCCOO
10116 26030 10115
external function (200000000)
10117 14130 10120
10120 00000 00000
10121 13230 10120
10122 20100 00000
10123 10111 10100 buffer
10124 74230 10123
10125 63200 10125 jump active

10126 61400 10000

IvV-11

Example 6:
Hypothetical input problem
There are three logical records on each'bloék of tape.
Each record is 100 locations long. Search word for the
block is -3 MAY- in compiler code, left justified. Read the
block, inserting the logical recbrds into three discontinuous

areas using the logical tape unit 1.
DECLARATION

5

READ 3 RECORDS = (10)

<external function(4600000000g)>,
<external function), | .
<buffer> (jump active),
<bufferd> (Jjump active),

<bufferd> (Jump active)..
(FLOWCHART)

5

R(100), Q(100), P(100), [search word: 3 may];
NAME:

[read 3 records <i)», <search word[0]>,

SP<, YA, YRS, .. |

Iv-12

V. OPERATORS GUIDE

A. CARD INPUT

NELIAC uses only the first 72 columns of each card.
The programmer may insert card numbers or any other infor-
mation he desires in columns 73 through 80. When the com-
pller edits the flowcharts for output, new card numbers are
assigned. Columns 73 through 77 of the output cards are
punched with the flowcharts sequence number, columns 78
through 80 are used for flowchart line numbers (1ine num-
bers increment by three, leaving two unused line numbers
for every card). The use of the editing routine of NELIAC
1s highly recommended, since many logical errors can be
discovered by examining the spacing and indentation of the

output flowcharts.

B. LOAD NUMBERS
Each flowchart begins with one of the ten load numbers.
The function of the flowchart in the system 1s uniquely de-~
scribed by that load number.
0 - TFlowchart plus the edited output of that
flowchart.
| = Declaration plus the edited output of

that flowchart.

2 - One line correction plus the edited out-
put of that flowchart.

% - TFlowchart correction plus the edited out-
put of that flowchart.
4 . Executive flowchart plus the edited output
of that flowchart.
- Flowchart
- Declaration
One line correction

- PFlowchart correction

O 0o N9 O WU
§

= Executive flowchart

C. CORRECTION LOADS
Each correction flowchart must have a sequence number
assoclated with it. The format for a correction 1is:
Load Number
Sequence Number
Correction Load
When a single line correction 1s made, the following
format must be strictly observed:
Example 1:
7 or 2
Sequence number
First comparison of at least 10 characters
Correction line
Second comparison line of at least.lo characters.

V-2

When using paper tape input, each line is followed by
a carriage return with a stop code at the end of the last line.
When using card input each line must be on a separate card.
The comparison lines are composed of a string of characters
which are independent of the original spacing and indentation
of the flowchart. Spaces in alpha-numerics are significant,
however, and must be duplicated. The correction line may
be blank, but must always exlst.,
Flowchart corrections are made to replace an entilre
flowchart on the input flowchart tape.
Example 2:
8 or 3
Sequence number
5 or 6
(FLOWCHART)
When using paper tape input, a stop code follows the
the sequence number on the leader of a 5 or 6 load flowchart.
When using card input, the load number and sequence number
must be on separate cards preceding the 5 or 6 load flow-

chart.

V-3

D. BATCHING CORRECTIONS

All corrections must be -batched-, i.e. all sequence
numbers of correction loads must be greater than or equal to
the sequence numbers of previously loaded corrections. If this
rule is not observed, additional passes must be made to update

the input master flowchart tape.

E. FUNCTIONS OF THE 9 LOAD

The 9 load, or executive flowchart, always indicates
the end of the loading and correcting phase of the compiling
process. At present, the information in thils flowchart should

be the programmers name and the date.

V-4

F. NEIOS

NELOS (Navy Electronics Laboratory Operating System) reflects an
operating philosophy necessary for ﬁhe generation and checkout of
large-scale programs whose characteristics make them difficult to.
handle with less powerful tools. The NELOS philosophy is simple:
NELOS provides automated supervisory control over the NELIAC compiler,
over program execution, and over the utility programs in the systemn.
Supervisory control must necessarily be informed control; to this end,
sections describing the operation of the NELIAC compiler and of the
monitor are included below.

NELOS has three basic parts: (1) The executive program; (2) The
monitor; and (3) The utility system. The executive program controls
the execution of all programs in NELOS. The monitor program is a
debugging aid which can interpretatively execute progreams, insert and
delete dynamic core dumps, and provide for dynamic source language
dats introduction. The utility system is a library of often used pro-
grams such as core dumps, tape dumps, tape copy programs, ete., which
can be called in and executed under NELOS control.

The NELOS executive program does a Iimited amount of automatic
sequencing during the compiling process. On the whole, NELOS is con-
trolled by the set of fourteen NELOS operators. Any collection of
these is called a NELOS control statement. It is a mistake to assume
that there are only fourteen basic functions in NELOS, however, since
the operators can be.used in any combination to perform uniquely

different tasks.

The "define segment' operator gives NELOS the ability to generate
programs which are too large to fit into memory at once and must be
split into pieces or "segments" which are called in from auxiliary
storage for execution. NELOS is specifically designed to aid in the
production of these programs from the NELIAC language. Because of the
close interrelationships of NELOS and the NELIAC compiler, a thorough
understanding of the operating principles of NELIAC is a prerequisite

for the successful use of NELOS.

G. NELIAC OPERATING CHARACTERISTICS

The basic input element to NELIAC is called the "flowchart." Any
collection of NELIAC or NELOS statements grouped together is always
called a "flowchart."

Identification of input types is effected by load numbers (i.e.,
the first character in a fléwchart is taken to be the load number. If
the first character in the flowchart is not a number, that flowchart
is identified as a NELOS control statement.).

The flowcharts are stacked for input to NELOS in the following
order:

Initial control statement
Declaration
NELIAC flowcharts
Terminal control statement
The first flowchart must necessarily be a NELOS control statement and

is called the "initial" control statement. This control statement is

V-6

different from other control statements in that it must be submitted

for every NELOS run, unlike other control statements which are pre-

served on the master flowchart tape, and need not be resubmitted.
The NELIAC compiler has three separate operating phases:

1. Update and code conversion

2. Compiling

3. Output

1. The update and code conversion phase does a very simple job;
it merely takes the source language input element (the flowchart) and
converts the card codes to a set of NELIAC compiler codes. The code
conversion program (load flowcharts) converts the hardware codes for
"Begin" to "{:" and "End" to "3}", etc. The update phase places the
binary core image of the NELIAC compiler codes onto the output flow-
chart tape for subsequent use by the compile phase. By the use of
correction load numbers, a flowchart image may be replaced on the out-
put flowchart tape.

Figure 1 is a detailed flow diagram of the operation of the
update phase. "EOFF" is "end of file flag on old flowchart tape."
"STOP CODE" is the hardware stop code recorded on the card image tape.
When an error is defected, control shifts back to NELOS with an appro-
priate error message. Note, corrections must be batched, i.e., correc-
tion numbers must be in an ascending sequence. Every flowchart is
counted in the correction process, the sequence numbers are implicit,
i.e., the first flowchart is number 1, the second is number 2, ete,
New flowcharts to be added to a program are always recorded after all

the old flowcharts.

V-7

8-A

LOAD

Os- END OF > FLOWCHART

FILE
(E OF F)

5, 6, 9 OR YES
CONTROL

NO
-
NO
YES
‘ﬁii'; NO EOFF = 5

YES

WRITE NEW
FLOWCHART

S

EOFF # 0 \N
EOFF = 0
S

\

Q

NO

READ SEQUENCE
NUMBER TO BE
REPLACED

TTTTTg>
SEQUENCE
NUMBER

| S

RROLY/

UPDATE CYCLE

FIGURE 1A

6-A

5 6,9, OR
CONTROL

NO

NO

CORRECTIONS
NOT BATCHED
VES

REWIND
OLD TAPE

NO

YES

//fviS THIS AN

K 8 LOAD

READ OLD
FLOWCHART

IS THIS THE
FLOWCHART TO
BE REPLACED

YES

A

NO

COPY OLD
FLOWCHART
TO NEW

0

END OF OLD
FLOWCHARTS

~

\b'ss

SET EOFF

STOP CODE

N
),

FIGURE 1B

AN

2. The compiling process is a one-pass operation; the source
language statements are read, and machine language produced without
any intervening intermediate language Or assembly phases. When the
process is complete for one flowchart element, all undefined or
"euture” references are written out on a scratch tape with the ma-
chine language produced from that flowchart. See Figure 2.

3. The output phase of NELIAC uses the intermediate output
tape of the compile phase to generate a binary object program tape
which contains the machine language in NELIAC format.

In addition, the output phase contains the formatting pro-
grams which generate the name list dump, the ob ject program dump,
and others. The output listing tape contains a list of all syntac-
tical errors detected during the compile phase and a list of all
undefined names detected during the output phase. A listing of the
names of the flowcharts compiled in sequence, along with their run-

ning locations and entrances, if any, is also produced.

H. NELOS EXECUTIVE PROGRAM

The executive program reads the NELOS operator and executes the
functions necessary to accomplish the required task. The first or
"initial" control statement has a unique function since it is not
placed on the flowchart tape with the other flowcharts introduced
into the system. The reader should examine Figure 3 and Figure L
for an explanation of the automatic sequencing of NELOS. Subsequent
control statements are written on the flowchart tape and are handled

exactly like any other flowchart. Note Figure 2.

V410

TT-A

GIN

COMPTLE
WRITE
INTERMEDIATE
TAPE

DECLARE

< CONTROL OR END - \

OF FLOWCHARTS j
0

COMPILE PHASE

FIGURE 2

ST-A

LOAD NEXT OPERATOR
@ INITIAL = ID OR NO

CONTROL DOUBLE PERIOD
STATEMENT

YES
\

EXECUTE
UPDATE
PHASE

!

RESET TO READ
REST OF INITIAL

CONTROL STATE-
MENT

EXECUTE
OPERATOR
FUNCTION

EXECUTE
OUTPUT
PHASE

YES

END OF

\ FLOWCHARTS

EXECUTE

NO /DOUBLE ,PERIODX YES
N J

NELOS AUTOMATIC SEQUENCING OF THREE NELIAC PHASES

FIGURE 3

— = COMPILE

PHASE

€T-A

EDIT
FLOWCHARTS

¢
L DUMP
OBJECT

NELOS
OPERATOR
INDEX

“\\xg/;:——___ PROGRAM

SET
CONSTANTS

EXECUTE OPERATOR FUNCTION

FIGURE L

END -

The reader should observe that NELOS control statements can be
executed while compiling, and that control can be exercised between
each NELIAC flowchart.

A very important part of NELOS is the "ENVIRONMENT GENERATION"
program. This program produces a tape which contains NELIAC's "NAME
LIST" or "ENVIRONMENT DESCRIPTION TABLE" and the machine language of
the programs whose names make up the name list. Every name defined
at the time that the environment tape is generated is included; all

programs and allocated tables are also included. Note, however, that

nonallocated tables do not exist as zeros on the tape, but only the
pertinent table and item names are preserved. Any NELIAC program may
become part of the "ENVIRONMENT" stored on tape. This tape will later
become an input tape to NELOS; whenever it is called, NELIAC will re-
call all those previously defined names and programs. If a new envi-
ronment tape is then generated, an augmented, enhanced environment
will be the result. The new environment is indistinguishable from an
environment generated with all the flowcharts compiled at one time.
Since it is not possible to change core allocation addresses on the
environment tape, it is recommended that a "Master Flowchart'" tape be
generated and continually updated for this specific purpose by the
system user. If such a tape is generated, then the flexibility of
NELIAC correction loads is extended to the new environment tape.

The tables and programs defined on the environment tape are typi-
cally those designed to work with programs which are not necessarily

in memory at the same instant. Commonly used subroutines or utility

V-1kh

and input/output packages would also be likely residents of the envi-
ronment tape. The value of the "environment tdpe" lies not so much
with the saving of compile time for often-used programs, but in the
clarification of the status of such programs and tables for each
individual contributor to a system program. Naturally, the burden of
currency is placed on the individuals responsible for the maintenance

of the environment tape.

I. THE NELOS OPERATORS
The NELOS operators discussed in this section are written in con-
trol statements just as they appear as the headings of the explanatory
paragraphs. If a nonexistent operator is written, or if the form 1is
not strictly observed, a NELOS error message will appear and the run
will be abandoned.
There are three categories of NELOS operators:
(1) PASSIVE
ID: PRINT: STOP, SET CONSTANTS (BEGINNING ADDRESS,
ENDING ADDRESS),
(2) ouUTPUT
EDIT FLOWCHARTS (FIRST FLOWCHART, LAST FLOWCHART), DUMP
OBJECT PROGRAM (FIRST FLOWCHART, LAST FLOWCHART), DUMP
NAME LIST,

(3) ACTIVE
DEFINE SEGMENT, TERMINATE RUN, CALL ENVIRONMENT, INCLUDE

MONTTOR, EXECUTE, GENERATE ENVIRONMENT, CALL UTILITY (N,,),

V-15

The "passive" operators can be written in any control statement.
Their use does not affect the operating characteristics of NELOS in
any way, i.e., the normal sequence of program generation will be
followed as illustrated in Figure 5.

The "output” operators can be used only at the termination of one
of the major compiling phases. NELOS must reference some of the work-
ing tapes in the system to accomplish the tasks related to output
operators, so their use is restricted to times when the tapes are
being passed from one phase of NELOS to the next (such as the end of
the update cycle or when a new environment tape is generated).

The "active" statements define the operating characteristics of
each NEIOS run. The active statements may be written in any control
statement, but some understanding of the NELIAC compiling procedures
is essential for meaningful opersation.

The implications of the NELOS operators are described in the
following paragraphs:

ID:

The ID, or identification operator may be written in any
control statement. The "ID" may be any alphanumeric string not
exceeding 50 characters and is terminated by a period. The alpha-
numeric information is preserved in NELOS and is used on all the
outputs generated until a new ID is given. This operator also sig-
nals the beginning of the update cycle (see Figures 1A and 1B).

PRINT:

The print operator causes the alphanumeric string following

the colon to be displayed on the supervisory printer. The string is

V-16

01D
NELIAC UPDATE FLOW-
STATEMENTS - PROGRAM << CHARTS
FLOW-
CHARTS

COMPILE
OLD
ENVIRON-
MENT
OUTPUT
]
NEW
ENVIRONMENT
GENERATTON ENVIRON

PROGRAM GENERATION CYCLE

FIGURE 5

v-17

restricted to a maximum of 50 characters. A period terminates the

string.

STOP,
The stop operator halts the computer until the high speed

switch is depressed. The stop statement is used typically to allow
the computer operator to mount or dismount tapes following a request
to do go as the result of a previous "PRINT" statement. The computer
operator may reassign NELOS' logical tape drives at this time to
utilize a newly generated environment or to swap malfunctioning tape
units.

SET CONSTANTS (BEGINNING ADDRESS, ENDING ADDRESS),

The set constants operator allows the programmer to allocate
his program to specific core locstions starting with the octal or
decimal locations written as "BEGINNING ADDRESS." The "ENDING
ADDRESS" index is a threshold indicator to the compiler which causes
a message to be placed on the error tape when the threshold is
passed. See Sample Control Statements, page V-21.

EDTT FLOWCHARTS (FIRST FLOWCHART, LAST FLOWCHART),

This operstor can only be used in the initial control state-
ment, and is always executed at the end of the update cycle. The
inclusive flowcharts specified by "BEGINNING ADDRESS" and "ENDING
ADDRESS™ are dumped on tape for subsequent listing and card punching.

DUMP OBJECT PROGRAM (FIRST FLOWCHART, TAST FLOWCHART) ,

This operator is legal only in the last or "terminal"” con-
trol statement, since NELIAC must perform the output phase to execute

this operator, and therefore terminates the compile phase.

v-18

DUMP NAME LIST,

This operator produces a’cross—referenced oﬁtput of the tags,
labels, verbs, and nouns used previously in the compiled program,
whether included with the environment or genérated by the object
program.

DEFINE SEGMENT,

This operator is legal throughout the compiliné»phése.
"DEFINE SEGMENT'" will cause_the program segument delimited by’"DEFINE
SEGMENT" operators to be stacked on the object program tape. This
operator is typically followed by a "SET CONSTANTS" operator,
although it need not be so followed.

TERMINATE RUN,

This operator is legal in any control statement, and simply
calls the next job. The use of this operator is mandatory when the
job to be done does not involve compiling. See Figure 3.

CALL ENVIRONMENT,

This operator should be used only in compiling control
statements, and causes the load of the environment description table
(name list) into NELIAC's working storage. The reader should observe
that "CALL ENVIRONMENT" will cause the compiler to forget all names
not in the environment description table. |

INCIUDE MONITOR,

This statement must be written if any calls to "ENTER
MONTTOR MODE" are used in the 9-load flowchart (see Section V-K).
The monitor program is recorded as the first program on the object

program tape and appears only once in the core program produced.

V-19

EXECUTE (N),

The "EXECUTE" operstor is used to run a program which is on
the object program tape. "N" is an integer which specifies the num-
ber of program segments to be loaded from the tape. The last program
segment loaded will be executed first. "'" can also be computed as
the number of times "DEFINE SEGMENT" is written + 1.

GENERATE ENVIRONMENT,

This operator causes NELOS to generate an environment tape
on the tape unit allocated for that purpose. Generation of the envi-
ronment tape should be done only in the last or "terminal" control
statement, since NELIAC must perform the output phase to execute this
operator.

CALL UTILITY (N, A, B, C, . . . Z)

The call utility operator is used to set up a parasmeter
string for one of the NELOS utility programs. "N" is an integer
specifying the file number of the utility program desired. "A"
through "Z'" are integers which are input perameters to the individual

utility program.

J. NELOS CONTROL STATEMENTS

Fach control statement must have at least one NELOS operator and
must end with a double period.

The proper use of NELOS is dependent on an understanding of NELIAC
compiling techniques. It is obviously inadvisable to attempt such

things as an object program dump or environment generation before

V-20

compiling.

Given below are some sample control statements. These are given

to acquaint the student with the appropriateness of most combinations.

SAMPLE CONTROL STATEMENTS

ID: P, SMITH 7 DEC 62.

EDIT FLOWCHARTS (3, 4), CALL
UTILITY (3, T),

PRINT: BEGIN COMPILING, REMOVE
OLD FLOWCHART TAPE,

STOP, TERMINATE RUN,

SET CONSTANTS (100008, 732618),

ID: A,GZZORK.

SET CONSTANTS (732628, 777778),

CALL ENVIRONMENT,

DEFINE SEGMENT,

TERMINATE RUN,

PRINT: TERMINATE RUN IF ANY
ERRORS THIS FAR.

STOP,

INCLUDE MONITOR,

Appropriate in initial
control statement to

control update phase

Appropriate in compiling

control statements

V-21

DUMP NAME LIST,

DUMP- OBJECT PROGRAM (10, 11), Appropriate in last state-
GENERATE ENVIRONMENT TAFE, ment. Associated with
PRINT: LABEL NEW ENVIRONMENT compiling or output phase

TAPE: QP2 T DEC 62.

CALL UTTILITY (2, 38, 5, 3),

CALL UTILITY (3, 1),

CALL ENVIRORMERNT, Appropriate as individual
DUMP NAME LIST, control statement which
TERMINATE RUN, does not use NELTAC
EXECUTE (3), Appropriate as control

statement which simply runs
a pre-compiled program
typically under NELOS

monitor control

K. THE NELOS MONITOR

The NELOS Monitor Mode of operation, a debugging aid, allows the
programmer to monitor, or "watch," the operation of specified areas
of his programs, through the use of his own "Monitoring Subroutines,"
The monitor will cause entry to the programmer's Monitoring Sub-
routine after the execution of each individual instruction within the

program area being monitored. The monitor will continue full

V-22

monitoring of jumps (and return jumps) to instructions outside of the
monitored area, unless the programmer chooses not to do so.

Upon completion of a monitored area, the monitor mode will cause
entry, if the programmer elects, to his own "End-Monitor" subroutine,
before continuing along with the main program.

The programmer may choose beforehand to have a monitor canceled
at any time during the run. If this is to be done during the execu-
tion of the monitor to be canceled, the associated End-Monitor sub-
routine, if any, will be executed as a part of the canceling
sequence.

Basically, then, the Monitor Mode is a vehicle for the pro-
grammer's convenience, one that leaveshim wide latitude in which to
program his own monitoring subroutines.

While the monitoring of an area is in progress, the address of
the individual instruction being monitored is available to the pro-
grammer as the noun "P," so that the programmer may use his monitor-
ing subroutine to save "P" and other data. When control is trans-
ferred to the programmer's monitoring subroutine, all registers will
have been restored to the values dictated by the program being

monitored.

ESTABLISHING A MONITOR
Monitors are established by use of the function call
ENTER MONITOR MODE (A, B, C, D, E), where:
A = The address (label) of the first instruction of the area to

be monitored, (may not be the entry cell of a function or subroutine).

v-23

B = The address (label of the last instruction of the area to be
monitored; |

C = The address (lsbel) of the programmer's "Monitoring Sub-
routine” ¥ itself;

D = The address (label) of the programmer's "End-Monitor Sub -
routine," * if desired, or zero, if no ending routine is wanted with
this monitor; and,

E = Zero, indicating the programmer wishes to monitor~§§l
instructions encountered while in the monitor mode; or, E equal
nonzero, indicating the programmer has elected the option to abort
full monitoring of jumps (and return jumps) to instructions outside
the area to be monitored.

If parameter E is nonzero, the monitor mode retains control in
the event that a jump or return jump outside the area is encountered,
but does not cause entry to the programmer's gubroutine until and
unless the running program returns to the monitored area. (This

condition is termed & "psuedo-monitor.")

ESTABLISHING AN END MONITOR

See parameter "D" under "Establishing a Monitor."
CANCELING A MONITCR

Monitors are canceled by using the function call
* Must be written as a subroutine.

v-2h

CANCEL MONITOR MODE (Ml’ M2’ - - - 8)'
where:

Mi = parameter "A" of an ENTER MONITOR MODE previously estab-
lished. From one to eight monitors may be canceled at one time. If
the Monitor Mode is unable to find a parameter "A" corresponding to
Mi, the operation is ignored for that Mi'

If no parameters (M's) are given in the function call, the
Monitor Mode will assume that the monitor currently being executéd
is to be canceled immediately, and will proceed directly to the
related End-Monitor Subroutine, if any. If no parameters are speci-

fied, and a Monitor Mode is not currently being executed, the opera-

tion will be ignored and the run will continue.

MULTIPLE MONITORS

Up to eight monitors may be established before any are canceled,
but to establish subsequent additional monitors, one existing monitor
must be canceled for each new one entered. Attempts to exceed the
1imit will be ignored.

No matter how many monitors are established, only one may be in
effect at any one time. With care, monitored areas may be nested, or
overlapped. If, while in monitor mode A, an entry to monitor mode B
is encountered, monitor mode A will only temporarily relinquish con-
trol to monitor mode B, and monitor mode B will, upon completion,
automatically return control to monitor mode A. This is ideal for

nesting, but requires care in overlapping.

v-25

Nested Monitor Modes

— |

Monitoring will be done in Mode
A from points 1 through 2, in
Mode B from points 2 through 3,
in Mode A from points 3 through
4, After point 4 the program
will resume operation in high-

speed mode.

Overlapping Monitor Modes
I

2
/\ .
B

4

Monitoring will be done in Mcde
A from point 1 to point 2, in
Mode B from pointe 2 through k,
and in Mode A again from point
4 until and unless the program
happens to return to a point
between points 1 and 3. Mode A
cannot be terminated (unless
canceled) until the instruction

at point 3 is actually executed.

Since a monitoring mode must naturally cause some expansion of

prograem running time (see "PIMING") it is important that the pro-

grammer carefully defines his limits, and builds efficient monitoring

subroutines. By keeping the monitoring subroutines small and fast,

and using end-monitor subroutines for time-consuming operations, such

as output operations, the programmer can keep running time at a mini-

mum. For example, it may be possible to use the Monitoring Subroutine

to meke a few quick entries into a buffer, and then output only once

the monitored results for the entire pass through the monitored area

during the End-Monitor routine.

It should be noted that the program being monitored will run at
normal computer speed except while operating within a monitored area.
If the sbort jump option is not taken, and jumps and subroutines are
subsequently monitored, more time yet will be required. (This may be
desired, of course.) If the abort jump option is taken, the monitor
mode continues in a "psuedo-monitor" condition, wherein the program-
mer's monitoring subroutine is not entered after each individual
instruction is executed.

Additionally, care must be taken that the first instruction in
an area will be executed, else the monitor may not be established.
For instance, if the first instruction of the area is skipped, or if
a jump is made into the middle of an area to be monitored, then no
monitor control will be initiated. Likewise, if the last instruction
to be monitored is skipped, the monitor will not be discontinued at
the proper point. The method used in establishing the monitor (in-
ternally) demands this care. The monitoring program itself is
initisted when an Enter Monitor Mode statement is encountered. Estab-
lishing a mode at this point, the monitoring routine saves the first
instruction of the ares to be monitored, and replaces it with an entry
to the monitor program. Control is returned to the program under
study until the monitor area is reached.

The use of the 9-load program is restricted to the writing of
monitoring subroutines, formatted output or test data introduction.
Since the 9-load flowchart is basically like any NELIAC flowchart,

full cognizance of source language names is achieved. The separate

v-21

load number for this flowchart is necéssary because of the usage of
this program rather than any unique treatment by NELIAC. When the
"execute” operstor of NELOS is used, the execution of the 9-load pro-
gram will always supersede the normal execution of the program. In
this way, the monitor locations can be established for debugging runs,
and ignored for production runs (as a manual option) without modifying
the program in any way. When running a program in the monitor mode,
care must be exercised in not disturbing the test environment defined
in the 9-load program. Data may be introduced into tables in a very
straightforward fashion by simply writing a NELIAC assignment
statement.

Example:

100 —» alpha, 200 = beta,

But, if one writes:

1-10(1) 100 { 1 —> table alpha [i] ,3
the 9-load program writer must insure that the value of "{" can safely
be altered or that zero is desired as the correct value of "i'" upon
exit from the loop.

For more ambitious test data introduction the programmer may use

a prepared test data tape and write a simple I/O statement into the

9-load program.

v-28

L. CAPABILITIES OF THE MONITOR PROGRAM

SAMPLE MONITOR PROGRAM

5 e 1
A(100), B, C; | B 2
D: . 3
3=3(1) 100 {0 =>4 [}, 4
E: o 5
i=0(1)98 { A1) +B+A [L+1]— A [1]}, 6
F: .. T
9 8
TS, [g:88888|3|88888/_]; 9
Enter monitor mode (E, F, H, 0, 0), 10
0 =» B, 10— C, 11
E. 12
H: 13
{i:j: write (g, P, 1), [call NELOS < 553 - 1k

The sbove trivial 9-load program shows the intrdduction of test
date in source lenguage (line 11). The monitoring subroutine is
written to detect the specific case when i is equal to j during the
execution of the program between the labels E and F. As a result of
running this program we would have written on the NELOS message

tape the octal address of label "F" and the value of "i" when

V-29

17 a1t

equality with "j" was obtained, which 1s zero. Why? This example
points out the fact that the NELOS monitor is a source language
debugging aid which has pointed out an eccentricity of the machine
as reflected in NELTAC, but without going back to the machine lan-
guesge to discover it. The power of the NELOS monitor is in the fact
that its focus can be broadened or narrowed as necessary to follow
general or specific problems which are difficult to diagnose from
static core dumps. The monitor mode may be used in its narrowvest
scope (i.e., beginning label = end label) to plant a dynasmic core
dump or test data introduction point without altering its running

characteristics significantly.

V-30

VI. PROGRAMMING TECHNIQUES

A. SAMPLE PROGRAMS

Efficient programming in any language 1s dependent upon
the programmers knowledge of the problem at hand and the tech-
niques used in generating machine code from the language 1n
which the program is wriltten. There are both efficlent and in-
efficlent programming methods in any language, whether 1t be
machine code or the most sophisticated higher.level language.
This.Section will attempt to provide examples of NELIAC pro-
gramming technigues which do provide efficient machine code
for the AN/USQ-20 computer. |

Example 1 1s a complete program producing a table of
values for a simple function, -The production of the table 1s
aided by use of the -write- package (See Section VI-B).

Example 1: |
F(A,B) = a(b - 3.994)

b + a

Evaluate the above functlon over the range

of A

i

0.0 to A= 5.0 in steps of 0.2, B = 1.0

to B 2.0 in steps of 0.2. Set up a table
of the functlon for these particular values.
The table should have a heading to
appear as in the example below. Each
answer should have two digits to the left of
the decimal point and three to the right.

VI-1

table of function f
o
a 1.0 1.2 1.4 1.6 1.8

0.0 XX XXX XX . XXX XX XXX XX XXX XX XXX
5 (COMMENT: DIMENSIONING)

[heading: |25| < table of function S /) 134 <> //
13| <a> [4] <1.05 |6] <1.2> [6] <1.b> [6] <1.6> [6]
1.8 6] <2.0> //1,

[line: 0.0 (6: |2] 00.000) / 1,

ans(6). real 1. real J. ;

PROGRAM: (COMMENT: FLOWCHART LOGIC)

enable paper tape,

write (heading),

1 = 0(2)50 {1 > real 1 / 10.0 > real 1,

3 = 10(2)20 {j > real] / 10.0 »> real jJ,

(3 -10)/2 >k,

£ (real i, real j) = ans[k], |

write(line, real i, ans[C], ans[1], ans{[2],
ans[3], ans[4], ans[51), i,

disable paper tape, |

Fla. b.): |
a x (b x b= 3.994) / (b +a)~>Db, }..
vI-2

2.0

XX XXX

o uw o= M

LINE

3,4

10

COMMENTS ON PROGRAM

Call the enabling subroutine for -write-.

Call to write heading, which requires no parameters.
Loop control with necessarily fixed point loop
control, real i~ and -real j- contain computed floating
representation of the indexing variables 1, J.

Note the automatic conversion to floating point mode
of the fixed poilnt variables 1 and J.

Compute subscript storage.

Call the function -f- with real i, real j, and store
the result in -ans[k], -, then end minor J loop.
-Write- call with 7 parameters. End i loop.

Disable paper tape, disabling subroutine for -write-.
Definition of -f- with two floating point formal
parameters, -a- and -b-.

Computation of -f- with answer in arithmetic
register.' (always true for floating point pseudo

accumulators).

VI-3

RS SR S ACACUSACTE VWOV VN VISRE S Y e e e N o o

ooUlEFNOoOAENOoO~NOWENOoCORAMNNDOoOOOWENO P

IR T N P T U N W J T TR T T O AN N T A TR RO A R N B |

—

.0

.000
.498
.855
. 122
230
L 496
633
LTU6
842
.924
.995
.058
113
. 162
206
245
.281
313
.343
370
.395
418
439
. 459

JATT
19k

"I N T N T T TR T O T T N R O I U NN NN Y N B B

table of function T

.000
.364
638
.851
.021
. 160
.276
275
L] 459
.532
.596
.652
.702
STHT
.787
.824
.857
.887
915
<941
.964
.986
.006
.025
.0U3

.059

"I N D T T N T A T T T T O R O R T N A I N BN B

1.4

.000
.254
451
.610
<159
847
.938
016
.084
144
.196
242
.284
522
255

ik
440
464
486
.506
.525
5H3
559
5TH
.589

b ekt et s ok ot e e et e aed b ek d d b ot —d =2 (DO OO OOO

VI-4

T T TR T T T TN SN NN AR FNNY N FN N A AN N N N NN BN N B B

et et et e et . O DO OO OO ODOOODODODOOCTCOO

p—y
.

,000

. 159
.286

291
ATT

551
614
., 669
.T16

. 759
.796
.830
.860
.887
912
935
.955
975
.992

.009

.024
.038
.051
.063
075
.086

[N YR T T TR TR Y N FRNY Y I Y AT TN NN N N N N AN N N B N

eYololololololfeolololololololelelolololololoNo N N R)]

.000
075
27

.188
.231

.269
201

.329
354
376
.396
Lk
430
LU45
.458
AT
482
492
.502
.511
.519
.527
.535
541
.548
.554

2.0

.000
.000
.001
.001
.001
.002
.002
.002
.002
.002
.003
.00
.003
.002
.003
.003
.003
.002
.002
.003
.00L4
.004
.004
.004
.004
004

OO0 ODODOOOODOOODOOOOODOOCOODOOOOO

B. The NELIAC -WRITE- PACKAGE
DESCRIPTION:

The -write- package 1s a general purpose output
package, written in NELIAC, which 1s in wide use for
formatting, report writing and scientific output. -Write-
uses the philosophy of an external-format-statement, writ-
ten as a literal in a NELIAC dimensioning statement. Each
-Write- call is written with 1its associated format literal
name, and the necessary parameters to be Justified, con-
verted and formatted for output. The formats are wrltten
as -plctures- of the desired output; the -write-~ package
scans the format literal for each parameter, and assembles
the external equipment codes for whichever plece of equip-
ment is -enabled- at that time.

Example 1:
Write(number format, number),

Example 1 illustrates a simple -wrlte- call with the
format plus one parameter. All calls on -write- are made in
a similar fashion. Up to thirty output parameters may be

handled with a single call.

PICTURES:
Example 2:
8888
Example 2 illustrates a -plcture- for a four octal digit

field with a sign. This field therefore occuples 5 spaces.

VI-5

Example 3:
0000
Example 3 1llustrates a -picture- of a four diglt decimal
field plus sign.
Example 4:
XXXX
Example 4 illustrates a four character variable alpha-
numeric field. A literal or the address of a variable alpha-
numeric area is a valid input parameter for this picture.
Example 5:
00.000
Example 5 illustrates a floating point picture for a
fractional conversion without an exponent part.
Example 6:
00.000 x 000
Example 6 illustrates a floating point pilcture for an
exponent conversion. This type of picture 1s the most general
floating point conversion and should always be used whenever

any doubt about the magnitude of output parameters exists.

LITERAL FIELDS:
Example 7:
<TITLE 1>
Example 7 illustrates a literal field in which the

alphanumeric -TITLE 1- will be displayed.

VI-6

SPACING AND LINE CONTROL:
Example 8:
|10]

Example 8 1llustrates the technique by which one can
space plctures or literal fields. The number between the
absolute signs, which designates the number of spaces desired,
is always decimal and may be zero.

Example 9:
/

Example 9 1llustrates a carriage return or -proceed to
the beginning of the next line- symbol.

Example 10:
T
Example 10 illustrates the top of form operator.
Example 11:
™
Example 1] illustrates the terminate functién, or

complete dump, operators.

INSERT, DELETE AND OVERPUNCH:

Any of the magnitude symbols (decimal point, mﬁlti-
plication sign, etc.) may be deleted with the foilowingw
notation:

Example 12:
004.100}x{00

VI-7

Example 12 illustrates a floating point conversion 1n
which the decimal point and multiplication sign have been
suppressed using only 8 columns (6 digits and 2 signs).

Example 13:
»>00}.{00}x{=>00

Example 13 is basically the same as Example 12
with both signs overpunched on the first digits of theilr
corresponding fields. Example 13 output requires only 6
columns.

Example 14:
C0{alpha-numeric}00

Example 14 shows an -insert- of an alpha-numeric
field in a number which is converted as a decimal integer.

Inserts may be made in any -picture-, but no more

than 5 inserts are allowed in a single picture.

REPEAT FORMATS:
Example 15:
(10:000)
Example 15 illustrates a condensed notation for 10
decimal parameters.
Example 16:
(3: XX |3] <TITLE> 00.00x0 7)
Example 16 illustrates the universality of the repeat

operation, Any picture, literal field or spacing or line or

VI-8

paper control operator may be included in the scope of the
repeat operation.
Example i7:
(2: (3: 00 |2]) <2Z2=>00)/
Example 17 shows the use of nested repeats. Up to

three repeats may be nested.

VI-9

TABLE I: NELIAC SYMBOLS

CHARACTER INTERNAL CHARACTER INTERNAL
FLEX and CARD OCTAL CODE FLEX CARD OCTAL CODE

space 00 5 4o
A 01 6 b1
B 02 g ﬁe
o) 03 3
D 04 9 L
E 05 8 oCT]
F 06 , 16
G 07 ;. $ 47
H]0 : . o‘ 50
I 11 : " 51
a . |, B
L 1% E éis 5

M 15]) 55
N 16 ! BEGIN 56
0 17 END 57
P 20 = EQ 60
Q 21 # NQ 51
R 22 > ¢lo] 22
S 2 4 LS 3
T 23 < 2 6k
U 25 S GR 65
vV 26 > = 56
W 27 + + 67
X 30 - - 70
Y 31 / / T1
yA 32 X " 72
0 33 not used T

1 b U ’ 7

2 35 U OR 75
3 36 N AND 76
L 37 t *k 7

NOTE: A[phabetic operators must be preceded and followed
by a blank column on the card.

TABLE I

Table IT: NELIAC CO/NO TABLE
L S L S e T S S S S Y 2 T < 2 T
» | % & 3 29 6 4 23 25 0 4 g0 10 10 10 10 10 0 11 1 1T 13 0 06 o0 0
' 4 & 3 29 6 4 23 0 21 4 10 10 10 10 10 10 10 11 1 1T 13 ©0 0 O o
. 4 & 3 29 6 4 23 o 21 B 10 110 1w 10 0 10 0 o N 1T 13 0 o0 o o
v | 8 8 3 5 6 4 23 o 2y B 10 10 10 10 10 10 0 11 1 T 13 0 o0 27 2
(] o o o o 6 20 23 o0 o0 o 0 2 7 T 1T 13 0 0 o0 o
Y] o o o 9 o 8 23 0o 21 0 9 9 9 9 8 8 18 4 0 o0 9 9
(|24 o o o o o0 o 25 o0 o 2 22 o0 22 0 28 28 0 0 0 O0 O0 o0
] 0o 0 0 o o0 o 0 0 0 0 0 0 (i} 0 o o0 o0 o o o o 0 0
s & 3 2 6 4 23 25 0 4 10 10 10 10 10 10 10 1 11 1T 13 0 o0 o o
bl % & 3 2 6 4 23 25 0 4 10 10 10 10 10 10 10 11 1 1T 13 06 0 0 o
=] 0 o o] 1 0 22 o0 0 0 o0 0 0 o0 0 o ' 1 ! | 1 [' 1
¢ 0 0 (] 1 1 0 23 0 0 0 o 0 0 0 0 0 !] 1 ' 1 0 0 ' 1
21 0 o o 1 1 0 22 0 0 o6 o0 O 0 O0 O0 O 1 ! 1 (! 1 0 o ' 1
< o o o ' 1 0 22 o0 0 0 o O 0 28 o0 0 1] i 1 1 0 o 1 '
s] o o o 1 1 6 22 0 o0 o0 o 0 0 o0 O O ' 1 1 1 I 1 1
>} o o o 1 ' 0 2> 0 o0 o0 o0 0 0 o0 o0 © 1) 1 1 1 0 o0 1 1
*119 19 19 19 26 19 23 0 0 19 19 19 19 19 19 19 19 19 19 19 19 0 0 19 19
+] 0 0o o0 27 6 27 23 25 21 0 10 10 10 10 10 10 10 1 11 T 13 0 0 27 e
-] 0 0 o0 12 6 12 23 25 2 0 12 12 12 12 12 12 12 12 12 17T 13 0 0 12 2
/] o 0 0 16 6 16 23 o 0 0 16 16 16 16 16 16 16 16 16 16 16 0 0 16 16
o o o0 15 6 15 23 0 0 0 15 15 15 15 15 15 15 15 15 15 15 0 0 15 15
Al o o o o o o 6 o o o0 o o o ©0 O ©0 ©0 ©0 ©0 O ©0 ©0 0 o0
I] o o o o o o 6 o o o o o0 o o0 O ©0 © O0 O0 O0 O O0 o0 O
vf 6 o o o0 6 o0 235 06 0 0 10 10 10 16 10 10 0 It It 1T 13 0 0 0 0
nfo o o o 6 0 23 0 0 0 10 0 10 10 06 10 10 M ¥ T 13 0 0 O 0
0, FAULT 10, GENERATE ADD OR ENTER 20, INITIATE LOOP CONTROL
1, INITIATE RELATION CONTROL 11. GENERATE ADD 21, SET EXIT CONDITIONS
2. FAULT 12. GENERATE SUBTRACT 22. GENERATE IO
}. GENGRATS RETURN JUMP 1A. GENERATE MULT QUANT 2i. MODIFY SUBSCRIFT
€ GHECK FOR ALGEPRA 18, GENERATE DIVIDE " 28. SAVE CURRENT OPERATOR
B Ciick roR Loop LaMITS " 16 GENERATE DIV GUANT - 2B, INYFIATE RELATION GONTROL
9. CLEAR TEMP LIST 19. GENERATE STORE 29, GENERATOR EXIT,

This table 1s included as a gulde to the legal CO/NO pairs, The numbers given at the
intersections specify which generator routine manufactures the machine code instructions
In general, if no number 1is given, that CO/NO pair is 1llegal.
Some speclal cases, such as shifts or octal notation, are processed elsewhere and do not

pertinent to that pair.

appear at all.

TABLE II

alphabet,
a through h,
and q through z

alphabet,
i through n

numerals

APPENDIX A

DEFINITION OF NELIAC SYMBOLS

Operands, i.e. constants, varilables,
names or tags.

Indices, register variables. These
are the AN/USQ-20 B-registers 1 through
6 respectively.

Constants. They are always consldered
to be decimal unless indicated other-
wise, =see g.

Punctuation. Separates statements
in the flowchart logic, names in the
dimensioning statement: 1ndicates
return transfer operations.

Puncuation. Indicates end of an
algorithm, an unconditional transfer
and may indicate end of a true or
false alternative.

Punctuation. Separates the dimenslon-
ing statement from the flowchart

logic. Marks the end of an alternative.
Separates the input and output parameters
in the function definition or call.

Punctuation. When used following a
relationship symbol it marks the end
of a comparison. It also denotes
that which follows as the definition
of the name immediately preceeding.
In the dimensioning statement 1t 1s
used when defining partial words or
congruent tables.

AN IVA RN

¥

x217

14X

Grouping symbols. In the dimensioning statement
parentheses enclose the number of locations to
be set aside for the name preceeding them. In
the flowchart logic they enclose the numerals
which indicate the increment or decrement to be
added to the index which controls a loop, or the
pit limits in a partial word operation. Paren-
theses also indicate algebraic groups which are
to be treated as a whole. They also enclose
comment statements.

Grouping symbols. These subscripting symbols
are used to enclose the subscript operand.

Punctuation. The braces enclose a subroutine,

a function, or a comparison considered as one

of the alternatives of a previous comparison.
They are also used in dimensioning partial words,
jump tables and address switches.

Relationship symbols. These are used in form-

ulating a decision, branch point or comparison.
The ¢ and > are also used as quotation marks in
literals and declarations and to indicate input
or output in active I/0 statements.

Store symbol. That which preceeds 1t 1s to be
stored in the variable which follows it. It
is also used to indicate the limits of bit
fields in partial word dimensioning.

Arithmetic symbols. The result of a compu-
tation stays in an arithmetic register and
is not preserved unless a store operation is
indicated. The symbols are listed in pri-
ority of execution within algebraic grouping.

Punctuation. Boolean comparison -or-.

Punctuation. Boolean comparison -and-.

x21

/21

Octal symbol. Indicates that the numerals which
preceded are an octal number. When used for
machine code the first five digits which preceded
the symbol are machine code for the f, j, k and

b designators of a command. The next digits to
follow are decimal unless indicated otherwilse

and are inserted as the y part of the instructilon;
a name may be inserted lnstead of numerals.

Exponent Co/No combination. Scaling technique
which indicates that the number preceding 1s

to be shifted (to the left with the multiply
symbol and to the right with the divide sym-
bol) the number of bits indicated by the number
following. Scaling is not legal with floating
point.

Absolute sign. When inserted in a name defin-
ition the name willl be temporary.

APPENDIX B
GLOSSARY OF NELIAC TERMS

The following terms and definitlons may be all or in part
well known to the reader. However, several have a more or
less special meaning in the explanation of NELIAC, so all should
be reviewed and understood. :

The first explanation or definition will be from -Glossary
of Terms and Expressions in the field of Computers and Auto-
mation- published in Computers and Automatilon, Dec. 1954, Vol.
3, No. 10, with a few modifications. The second will be the
NELIAC definition if appreciably different. Either the first or
second definition will be omitted if not applicable.

ADDRESS VARIABLES :
2. A noun which specifles the address of the varilables
which contain the data or the address of the data itself.

BITS »
1. A binary digit; the smallest unit of information; a
-yes- or -no-; a single pulse in a group of pulses.

Co
1.2. Current operator.

COMPARISON

",2. The act of comparing and, usually, acting on the
result of the comparison. The common forms are comparison of
two numbers for identity, comparlson of two numbers for relatlve
magnitude, and comparison of the two signs, plus or minus.

COMPARISON STATEMENT

1.2. A NELIAC statement which designates the type of
comparison to be made and the action to be taken as a result
of the comparison.

COMPILER

1. A program making routine which produces a specific
program for a particular problem by the followlng process: (a)
determining the intended meaning of an element of information
expressed in pseudo-code; (b) selecting or generating (i.e.
calculating from parameters and skeleton instructions) the re-
quired subroutine; (c) transforming the subroutine into specific
coding for the specific problem, assigning specific memory
reglisters, etc., and entering it as an element of the problem
program; (d) maintaining a record of the subroutines used
and their position in the problem program; and (e) continuing
to the next element in pseudo-code.

B-1

COMPUTER
1. A machine which is able to calculate or compute,

that is, which will perform sequences of reasonable oper-
ations with information, mainly arithmetical and logical
operations. More generally, it is any device which 1s
cenable of accepting information, applying definite
reasonable processes to the information, and supplying
the results of these processes.

CONSTANTS

1.2. A specific numeric value, which is octal 77777 TT1T7T7
or less, that is in the NELIAC flowchart logic (i.e. DOLLARS x
100 » CENTS, where 100 is the constant}).

CONTROL
1. To direct the sequence of execution of the instructions

to a computer,

CONTROL ROUTINE
1.2. A routine which is entered with a straight jump and

effects control.

DEBUG
1. To isolate and remove malfunctions from a computer or

mistakes from a program.

DECLARATION

\ 2. A machine dependent operation called by an actlve
statement in the flowchart logic and inserted into the object
program as an open subroutine.

DECLARATOR

_ 2. Any of the names available as English phrases to
describe and call on input/output declarations for the
AN/USQ-20 computer.

DECREMENT
1.2. To decrease the value contalned in a reglster or
cell by a glven amount.

DIMENSIONING STATEMENT

1.2. The initial portion of a flowchart which contains
the assigned names (nouns) of all variables, lists, and tables
used in the flowchart logic.

EQUALITY SIGN
1.2. The symbol (=) meaning -equal to-.

FLEXOWRITER

1.2. A typewriter-like machine which will produce a
punched paper tape that can be read by the computer.

B-2

FLOATING POINT

1.2. A mode of arithmetic in which each variable has an
associated radix point which is adjusted to preserve the max-
imum precision in each arithmetic operation, independent of
the original magnitudes of the variables. :

FLOWCHART ;
1. A graphical representation of a sequence of program-

ming operations, using symbols to represent operations such as

compute, substitute, compare, jump, copy, read, write, etc.

2. The dimensioning statement and the flowchart 1ogic°

FLOWCHART LOGIC

1.2, The NELIAC language logic flow using NELIAC oper-
ator symbols, constants, predefined variables nouns), and
other routine, control routine and subroutine names (verbs).

INCREMENT
1.2. To increase the value contained in a register or
memory cell by a glven amount.

INDEXING
1.2. Modifying or altering the operand by an 1lndicated
amount or value contalned in a reglster.

INSTRUCTION

1. A machine word or set of characters in machine
language which directs the computer to take a certailn action.
More precisely, a set of characters which defines an operatlon
together with one or more addresses (or no address) and which,
as a unit, causes the computer to operate accordingly on the
indicated quantities.

JUMP ’

1. An instruction or signal which, condltlonally or ~
unconditionally, specifies the loc¢ation of the next instruction
and directs the computer to that instruction. A jump 1s used
to alter the normal sequence in the control of the computer.
Under certain special conditions, a Jjump may be caused by the
operator throwlng a switch.

K-DESIGNATOR
1.2. The portion of an AN/USQ-20 machine instruction which
designates what 1s to become the operand of the instruction.

LOAD FLOWCHARTS
1.2. The load program portion of the NELIAC compiller,

B-3

LANGUAGw
1.2, A system of communication in which given combin-
ations of given symbols communicate a specific meaning.

LOAD PROGRAM

1.2. A short preliminary program loaded in memory
which permits some interpretation and editing of the data
during the loading operation,

LOOP

1.2, A loop is a series of operations repeated any
number of times as specified by the loop control, or until
an exit condition is satisfied.

LOOP CONTROL
1.2. The part of the loop which specifies the number of
times the loop shall be repeated.

MACHINE NEGATIVE NUMBER
1.2. Any negative number in the machine kept 1in comple-
mented form with a one bit in the highest order position.

NO
1.2. Next operator.

OPEN SUBROUTINE

1.2. A sequence of instructions which are built into
the program every time they are needed; as contrasted with a
closed subroutine, where the instructions are inserted only
once, then called with a return transfer instruction.

OPERAND

1.2. Any one of the quantities entering into or arising
from an operation. An operand may be an argument, a result,
a parameter, or an indication of the location of the next
instruction.

OPERATOR

1.2. The person who actually operates the computer,
puts problems on, presses the start button, etc.

2. The punctuation and algebraic symbols which the
compiler uses to generate machine code.

PSEUDO-CODE

1.2. An arbitrary code, independent of the hardware
of a computer, which must be translated into computer code if
it 1is to direct the computer.

B-4

PROGRAM

1. A precise sequence of coded instructions for a dig-
1tal computer to solve a problem.

2. A collection of flowcharts with thelr assoclated
dimensioning statements from which the compiler manufactures
a machine coded program.

PARAMETER

1.2. In a subroutine, a quantity which may be glven
different values when the subroutine 1s used in different
parts of one main routine, but which usually remains un-
changed throughout any one such use.

REGISTER
1.2. The hardware for storing one machine word.

REGISTER VARIABLES
2. The index registers Bl through B6, as represented

by the letters i through n, on the AN/USQ-20 computer.

ROUTINE
..1.2., See -program-,

SHIFT

: 1.2. To move the character of a unit of informatlon
columnwise right or left. In the case of a number, this is
equivalent to multiplying or dividing by a power of the base
of notation (usually ten or two). This 1s regularly per-
formed faster than usual multiplication or division.

STOP CODE
‘ 1.2. On punched paper tape, a signal to stop equipment
while reading or duplicating a tape.

SUBROUTINE

1. A short or repeated sequence of instructions for a
computer to solve part of a problem: a part of a routine.

2. The sequence of instructions necessary to direct the
computer to carry out a well-defined mathematical or logical
operation: a sub-unit of a routine.

TAPE

1.2. Any kind of paper, metal, plastic, magnetic or
non-magnetic material which carries coded information as
polarized magnetic spots or punched holes in the tape.

VARIABLES

1. Any specified memory cell or register may be
thought of as a variable.

2. Variables in NELIAC are designated by alpha-numeric
names. The names must begin with a letter and may be of any
length. The compller will, however, interpret only the first
fifteen characters of the name. A variable may alsoc have a
specified constant value throughout the program.

WORD

1.2. An ordered set of characters which has at least
one meaning, and 1s stored and transferred by the computer
clrcuits as a unit. Ordinarily, a word has a fixed number
of characters, and is treated as an instruction by the

control unit and as a quantity by the arithmetic unit.

APPENDIX C
SYSTEM DECLARATION

The active input/output statements listed here call
on the -System Declaration-, which is a part of NELIAC.
Following the name of each statement is a valid example
of the use of that statement.

There are four legal types of operands used in active

input/output statements:

1) Address variables,

2) Read operands (register variables, whole or
half words),

3) Store operands (whole or half words only),

4) Buffer operands (described in Section IV).

The examples listed below use descriptive names as
operands. -Entry- is defined as an entry point, -find
index- is a store operand, -core area- is a buffer operand,

and all the other operands are read operands.

ACTIVE INPUT/OUTPUT STATEMENTS

STOP =

[stop < entry >s 1,

START FLEX =

[start flex < ,],

TURN OFF FLEX =
[turn off flex < ,],

READ MAG DRUM =

[read mag drum < drum operand >, < core area >, 1,

WRITE MAG DRUM =

[write mag drum < drum operand), < core areap,],

MOVE BLOCK =

[move block < start operand >, < number of cells >,

¢ move operand >,],

PRINT LITERAL =
[print literal < address variable 5, 1,

START READER =

[start reader < ,],

TURN OFF READER =

[turn off reader < ,],

START PUNCH =

[start punch < , 1,

TURN OFF PUNCH =

[turn off punch < ,],

OUTPUT FLEXCODE =

[output flexcode < read operand > ,],

KEY 1 =

[key 1 < entry >, 1,

[key 2 < entry >, 1,

KEY 3 =

[xey 3 < entry >,],
KEY 5 =

[key 5 < entry > ,1],

[key 6 ¢ entry > ,],

C-3

KEY 7 =
[key 7 < entry > ,1,

READ ONE FRAME =

[read one frame < store operand > ,],

STORE REMAINDER =

[store remainder < store operand > ,],

RETURN JUMP STOP =
[return jump stop < entry > ,],

SEARCH ZERO =
[search zero ¢ list length to search) ,
< name of 1list > , < no find entry > , '
¢ find index > ,],

SEARCH NOT ZERO =
[search not zero < list length to search > ,
{ name of 1list > , no find entry > ,
< find index > ,],

SEARCH LESS THAN =
[search less than < argumeht >,
< list length to»search > , < name of list > ,
¢ no find entry > , < find index > ,],
Cc-4

SEARCH GREATER THAN =
[search greater than < argument > ,
¢ list length to search > , < name of 1list > ,

< no find entry > , < find index > ,],

SEARCH EQUAL =
[search equal < argument > , < list length to search > ,
¢ name of 1list > , < no find entry > , < find index > ,];

SEARCH BETWEEN =
[search between < lower argument > , < upper argument > ,
< list length to search‘> , < name of list > ,

¢ no find entry > , < find index > ,],

SEARCH NOT BETWEEN =
[search not between < lower argument > ,
< upper argument > , < list length to search > ,

< name of 1list > , < no find entry > , < find index > R

CLEAR CELLS =
[clear cells < number of cells to clear > ,

< start operand > ,],

STOP = < machine(61400g0k) >,

START READER = (4) (external function (40g)),

TURN OFF READER = (4) (external function (400g)),

START PUNCH =(4) (external function (20g)),

TURN OFF PUNCH = (4) (external function (200g)),

KEY 1 =
KEY 2 =
KEY 3 =
KEY 5 =
KEY 6 =

KEY 7 =

< machine(61100g0k) > ,
< machine(61200g0k) > ,
< machine(61300g0k) > ,
< machine(6150050k) > ,
< machine(61600g0k) > ,
< machine(6170050k) > ,

READ ONE FRAME = < buffer >, (jump active),

STORE REMAINDER = < machine(15000g0k) >,

RETURN JUMP STOP = < machine(6540Cg0k) >,

SEARCH ZERO = < machine(70230g0k) > ,

< machine(11437g77776sk) > , < machine(61000g0k) > ,

< machine(16730g0k) > ,

SEARCH NOT ZERO = < machine(7023050k) > ,

¢ machine(11537s77776sk) > , < machine(61000g0k) > ,

< machine(16730g0k) > ,

c-6

SEARCH LESS THAN = < machlne(10030g0k) > ,
(machine(27000g1)), < machine(70230g0k) > ,
< machine(04237577776sk) > , <machine(61000g0k) > ,
< machine(16730g0k) > ,

SEARCH GREATER THAN = < machine(10030g0k) > ,
< machine(7023040k) > , < machine(04337g7T7T76sk) > ,
< machine(61000g0k) > , < machine(1673050k) > ,

SEARCH EQUAL = (machine(10040g77777s)), < machine(1103050k) > ,
< machine(7023050k) > , < machine(43437sTT7776sk) > ,

< machine(61000g0k) > , < machine(16730g0k) > ,

SEARCH BETWEEN = < machine(11030g0k) > , < machine(10030g0k) > ,
(machine(27000g1)), < machine(7023050k) > ,

< machine(0442757T776sk) > , < machine(61000g0k) > ,

< machine(16730g0k) > ,

SEARCH NOT BETWEEN = < machine(11030g0k) > ,
< machine(10030g0k) > , (machine(21000g1)),
< machine(7023040k) > , < machine(04537g77776sk) > ,

< machine(61000g0k) > , < machine(16730g0kx) > ,

CLEAR CELLS = < machine(7010050k) >, < machine(1603050k) >,

C-7

	000
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	7-01
	7-02
	A-01
	A-02
	A-03
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07

